6u^2+10u-1=0

Simple and best practice solution for 6u^2+10u-1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6u^2+10u-1=0 equation:


Simplifying
6u2 + 10u + -1 = 0

Reorder the terms:
-1 + 10u + 6u2 = 0

Solving
-1 + 10u + 6u2 = 0

Solving for variable 'u'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-0.1666666667 + 1.666666667u + u2 = 0

Move the constant term to the right:

Add '0.1666666667' to each side of the equation.
-0.1666666667 + 1.666666667u + 0.1666666667 + u2 = 0 + 0.1666666667

Reorder the terms:
-0.1666666667 + 0.1666666667 + 1.666666667u + u2 = 0 + 0.1666666667

Combine like terms: -0.1666666667 + 0.1666666667 = 0.0000000000
0.0000000000 + 1.666666667u + u2 = 0 + 0.1666666667
1.666666667u + u2 = 0 + 0.1666666667

Combine like terms: 0 + 0.1666666667 = 0.1666666667
1.666666667u + u2 = 0.1666666667

The u term is 1.666666667u.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667u + 0.6944444447 + u2 = 0.1666666667 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667u + u2 = 0.1666666667 + 0.6944444447

Combine like terms: 0.1666666667 + 0.6944444447 = 0.8611111114
0.6944444447 + 1.666666667u + u2 = 0.8611111114

Factor a perfect square on the left side:
(u + 0.8333333335)(u + 0.8333333335) = 0.8611111114

Calculate the square root of the right side: 0.927960727

Break this problem into two subproblems by setting 
(u + 0.8333333335) equal to 0.927960727 and -0.927960727.

Subproblem 1

u + 0.8333333335 = 0.927960727 Simplifying u + 0.8333333335 = 0.927960727 Reorder the terms: 0.8333333335 + u = 0.927960727 Solving 0.8333333335 + u = 0.927960727 Solving for variable 'u'. Move all terms containing u to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + u = 0.927960727 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + u = 0.927960727 + -0.8333333335 u = 0.927960727 + -0.8333333335 Combine like terms: 0.927960727 + -0.8333333335 = 0.0946273935 u = 0.0946273935 Simplifying u = 0.0946273935

Subproblem 2

u + 0.8333333335 = -0.927960727 Simplifying u + 0.8333333335 = -0.927960727 Reorder the terms: 0.8333333335 + u = -0.927960727 Solving 0.8333333335 + u = -0.927960727 Solving for variable 'u'. Move all terms containing u to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + u = -0.927960727 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + u = -0.927960727 + -0.8333333335 u = -0.927960727 + -0.8333333335 Combine like terms: -0.927960727 + -0.8333333335 = -1.7612940605 u = -1.7612940605 Simplifying u = -1.7612940605

Solution

The solution to the problem is based on the solutions from the subproblems. u = {0.0946273935, -1.7612940605}

See similar equations:

| 3(2x)=20+x | | 16a-3=5 | | 16a-3=-5 | | 8c-7=-23 | | x/2x | | 24+28=x+12 | | ex+3e-x=4 | | X^4-3x^3+4=0 | | X^4-3x^3+3=0 | | X^4-3x^3+2=0 | | D^2-5D-6=0 | | 4*(2x-5)+(3x-5)*8=5*(4x-3)-(2x-3)*3 | | x^6+5x^3+8=0 | | ln(x)=(-3) | | A+B+B+B+80+89=100 | | 9-(7-x)=21+2(5+3x) | | x^2-64=25 | | 5*(3x-2)+(5x-3)*2=(4x-1)*7-3*(5x-1) | | 6x-1=2-3x | | 6x+1=2-2x | | 1500+-200x+x^2=0 | | 0.11-0.375x+0.5625x^2=0 | | 375x^2-250x+4=0 | | 10x+300=-0.2x^2+50x | | 10x^2-29x+12=0 | | 30=29 | | 12x^2-8x-20=0 | | 12x^2-8-20=0 | | 50/3x9 | | 15=5/3(d-6) | | -8p-24=16 | | -3j+4/-6=12 |

Equations solver categories